Complete set of translation invariant measurements with Lipschitz bounds
نویسندگان
چکیده
منابع مشابه
A note on the bounds of Laplacian-energy-like-invariant
The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...
متن کاملOn a Metric on Translation Invariant Spaces
In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.
متن کاملIsometry - invariant geodesics with Lipschitz obstacle 1
Given a linear isometry A0 : Rn → Rn of finite order on Rn , a general 〈A0〉-invariant closed subset M of Rn is considered with Lipschitz boundary. Under suitable topological restrictions the existence of A0-invariant geodesics of M is proven.
متن کاملPerturbation bounds for $g$-inverses with respect to the unitarily invariant norm
Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...
متن کاملLipschitz Spaces with respect to Jacobi Translation
The Jacobi polynomials induce a translation operator on function spaces on the interval [−1, 1]. For any homogeneous Banach space B w.r.t. this translation, we can study the according little and big Lipschitz spaces, lipB(λ) and LipB(λ), respectively. The big Lipschitz spaces are not homogeneous themselves. Therefore we introduce semihomogeneous Banach spaces w.r.t. Jacobi translation, of which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2020
ISSN: 1063-5203
DOI: 10.1016/j.acha.2020.05.007